Yield strain behavior of trabecular bone.

نویسندگان

  • D L Kopperdahl
  • T M Keaveny
چکیده

If bone adapts to maintain constant strains and if on-axis yield strains in trabecular bone are independent of apparent density, adaptive remodeling in trabecular bone should maintain a constant safety factor (yield strain/functional strain) during habitual loading. To test the hypothesis that yield strains are indeed independent of density, compressive (n = 22) and tensile (n = 22) yield strains were measured without end-artifacts for low density (0.18 +/- 0.04 g cm(-3)) human vertebral trabecular bone specimens. Loads were applied in the superior-inferior direction along the principal trabecular orientation. These 'on-axis' yield strains were compared to those measured previously for high-density (0.51 +/- 0.06 g cm(-3)) bovine tibial trabecular bone (n = 44). Mean (+/- S.D.) yield strains for the human bone were 0.78 +/- 0.04% in tension and 0.84 +/- 0.06% in compression; corresponding values for the bovine bone were 0.78 +/- 0.04 and 1.09 +/- 0.12%, respectively. Tensile yield strains were independent of the apparent density across the entire density range (human p = 0.40, bovine p = 0.64, pooled p = 0.97). By contrast, compressive yield strains were linearly correlated with apparent density for the human bone (p < 0.001) and the pooled data (p < 0.001), and a suggestive trend existed for the bovine data (p = 0.06). These results refute the hypothesis that on-axis yield strains for trabecular bone are independent of density for compressive loading, although values may appear constant over a narrow density range. On-axis tensile yield strains appear to be independent of both apparent density and anatomic site.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The modified super-ellipsoid yield criterion for human trabecular bone.

Despite the importance of multiaxial failure of trabecular bone in many biomechanical applications, to date no complete multiaxial failure criterion for human trabecular bone has been developed. By using experimentally validated nonlinear high-resolution, micromechanical finite-element models as a surrogate for multiaxial loading experiments, we determined the three-dimensional normal strain yi...

متن کامل

Micromechanical analyses of vertebral trabecular bone based on individual trabeculae segmentation of plates and rods.

Trabecular plates play an important role in determining elastic moduli of trabecular bone. However, the relative contribution of trabecular plates and rods to strength behavior is still not clear. In this study, individual trabeculae segmentation (ITS) and nonlinear finite element (FE) analyses were used to evaluate the roles of trabecular types and orientations in the failure initiation and pr...

متن کامل

0031 - Non-linear Behavior of Trabecular Bone at Small Strains

Introduction: Study of the non-linear behavior of trabecular bone at habitual “small” strains (<0.4% strain [1]) is vital for further investigation of the cellular response to mechanical loading of bone tissue, in vivo energy dissipation mechanisms, implant interface mechanics, and biomechanical constitutive modeling. Perceptions of the initial non-linearity in the stressstrain curve have shift...

متن کامل

Analysis of Trabecular Bone Multiaxial Failure Using Large Scale Computation

INTRODUCTION Multiaxial failure behavior of trabecular bone is important clinically since multiaxial loads occur in vivo, and are associated with hip fractures [1, 2] and implant loosening [3]. Knowledge of the multiaxial failure behavior of trabecular bone also has biological importance since it will enable whole bone finite element models [4] to accurately predict failure loads. To date, no c...

متن کامل

Multiaxial Viscoelasticity and Damage Effects in Vertebral Trabecular Bone

INTRODUCTION: The rapid expansion of the at-risk population for pathological fracture has led to increased interest in the ability to predict the mechanical behavior of trabecular bone as it relates to routine nontraumatic loading. A large body of work has established that the mechanical behavior of cancellous bone, particularly stiffness and strength under monotonic loading, is strongly depend...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of biomechanics

دوره 31 7  شماره 

صفحات  -

تاریخ انتشار 1998